Mask Detection
- SDK.detect_mask(self: tfsdk.SDK, tf_image: tfsdk.TFImage, face_box_and_landmarks: tfsdk.FaceBoxAndLandmarks) Tuple[tfsdk.ERRORCODE, tfsdk.MASKLABEL, float]
Detect if there is a mask on the face in the given image.
- Parameters:
tf_image - The input
tfsdk.TFImage
, returned bytfsdk.SDK.preprocess_image()
.face_box_and_landmarks -
tfsdk.FaceBoxAndLandmarks
returned bytfsdk.SDK.detect_faces()
ortfsdk.SDK.detect_largest_face()
.
- Returns:
tfsdk.ERRORCODE
- The error code.tfsdk.MASKLABEL
- The predictedtfsdk.MASKLABEL
for the input face.float - The mask score for these images. This can be used for setting custom thresholds that work better for the use case. By default, we use a mask score greater than 0.82 to determine that no mask was detected.
- SDK.detect_masks(self: tfsdk.SDK, tf_facechips: List[tfsdk.TFFacechip]) Tuple[tfsdk.ERRORCODE, List[tfsdk.MASKLABEL], List[float]]
Detect whether the faces are wearing a mask or not. This batch processing method increases throughput when using GPU inference.
- Parameters:
tf_facechips A list of
tfsdk.TFFacechip
on which to run mask detection.- Returns:
tfsdk.ERRORCODE
- The error code.List[
tfsdk.MASKLABEL
] - The predictedtfsdk.MASKLABEL
for the input face chips.List[float] - The mask scores for these images. This can be used for setting custom thresholds that work better for the use case. By default, we use a mask score greater than 0.82 to determine that no mask was detected.
- class tfsdk.MASKLABEL
Members:
MASK : There is a mask on the face.
NO_MASK : There is no mask on the face.