Face Detection

class tfsdk.TFFacechip

Example of a Facechip:

_images/chip.jpg
TFFacechip.save_image(self: tfsdk.TFFacechip, filepath: str) None

Save the face chip to disk.

Parameters:

filepath - The filepath where the face chip should be saved, including the image extension.

TFFacechip.load_image(self: tfsdk.TFFacechip, filepath: str, gpu_memory: bool = False, gpu_index: int = 0) tfsdk.ERRORCODE

Load the face chip from disk.

Parameters:
  • filepath - The filepath of the facechip to load.

  • gpu_memory - Read the image into GPU memory. This should be set to true when running GPU inference.

  • gpu_index - The GPU index.

TFFacechip.get_height(self: tfsdk.TFFacechip) int

Get the face chip height in pixels.

Returns:

int - The face chip height in pixels.

TFFacechip.get_width(self: tfsdk.TFFacechip) int

Get the face chip width in pixels.

Returns:

int - The face chip width in pixels.

TFFacechip.as_numpy_array(self: tfsdk.TFFacechip) numpy.ndarray[numpy.uint8]

Get the facechip as a numpy array.

Returns:

numpy.ndarray[numpy.uint8] - The facechip as a numpy array in BGR format.

SDK.detect_faces(self: tfsdk.SDK, tf_image: tfsdk.TFImage) Tuple[tfsdk.ERRORCODE, List[tfsdk.FaceBoxAndLandmarks]]

Detect all the faces in the image and return the bounding boxes and facial landmarks. Use the FACEDETECTIONFILTER configuration option to filter the detected faces. Refer to our FAQ page to understand the impact of face height on similarity score. The face detector is able to detect faces in the following dynamic height range. Smallest detectable face = ((the larger of your image dimensions) / 640 * 20) pixels. Largest detectable face = (your image height) pixels.

Parameters:

tf_image - The input tfsdk.TFImage, returned by tfsdk.SDK.preprocess_image().

Returns:
  • tfsdk.ERRORCODE - The error code.

  • List[tfsdk.FaceBoxAndLandmarks] - The detected faces. If no faces are found, the list will be empty. The detected faces are sorted in order of descending face score.

SDK.detect_largest_face(self: tfsdk.SDK, tf_image: tfsdk.TFImage) Tuple[tfsdk.ERRORCODE, bool, tfsdk.FaceBoxAndLandmarks]

Detect the largest face in the image by area. Use the FACEDETECTIONFILTER configuration option to filter the detected faces. Refer to our FAQ page to understand the impact of face height on similarity score. The face detector is able to detect faces in the following dynamic height range. Smallest detectable face = ((the larger of your image dimensions) / 640 * 20) pixels. Largest detectable face = (your image height) pixels.

Parameters:

tf_image - The input tfsdk.TFImage, returned by tfsdk.SDK.preprocess_image().

Returns:
SDK.get_face_landmarks(*args, **kwargs)

Overloaded function.

  1. get_face_landmarks(self: tfsdk.SDK, tf_images: List[tfsdk.TFImage], face_box_and_landmarks_vec: List[tfsdk.FaceBoxAndLandmarks]) -> Tuple[tfsdk.ERRORCODE, List[Annotated[List[tfsdk.Point], FixedSize(106)]]]

    Obtain the 106 face landmarks. This batch processing method increases throughput when using GPU inference.

    Parameters:
    Returns:
    • tfsdk.ERRORCODE - The error code.

    • List[Annotated[List[tfsdk.Point], FixedSize(106)]] - Array of lists of the 106 face landmark points.

  2. get_face_landmarks(self: tfsdk.SDK, tf_image: tfsdk.TFImage, face_box_and_landmarks: tfsdk.FaceBoxAndLandmarks) -> Tuple[tfsdk.ERRORCODE, Annotated[List[tfsdk.Point], FixedSize(106)]]

    Obtain the 106 face landmarks.

    Parameters:
    Returns:
    • tfsdk.ERRORCODE - The error code.

    • Annotated[List[tfsdk.Point], FixedSize(106)] - List of the 106 face landmark points.

The order of the face landmarks:

_images/landmarks.png
SDK.extract_aligned_face(self: tfsdk.SDK, tf_image: tfsdk.TFImage, face_box_and_landmarks: tfsdk.FaceBoxAndLandmarks, margin_left: int = 0, margin_top: int = 0, margin_right: int = 0, margin_bottom: int = 0, scale: float = 1.0) Tuple[tfsdk.ERRORCODE, tfsdk.TFFacechip]

Extract the aligned face chip. Changing the margins and scale will change the face chip size. If using the face chip with Trueface algorithms (ex face recognition), do not change the default margin and scale values.

Parameters:
Returns:
SDK.estimate_head_orientation(self: tfsdk.SDK, tf_image: tfsdk.TFImage, face_box_and_landmarks: tfsdk.FaceBoxAndLandmarks, landmarks: Annotated[List[tfsdk.Point], FixedSize(106)]) Tuple[tfsdk.ERRORCODE, tfsdk.HeadOrientation]

Estimate the head orientation. Refer to our FAQ page to understand the impact of head orientation on similarity score.

Parameters:
Returns:
class tfsdk.Point
to_dict(self: tfsdk.Point) dict

Return a dictionary representation of the object.

property x

Coordinate along the horizontal axis, or pixel column.

property y

Coordinate along the vertical axis, or pixel row.

class tfsdk.FaceBoxAndLandmarks
property bottom_right

The bottom-right corner Point of the bounding box.

get_area(self: tfsdk.FaceBoxAndLandmarks) float

Get the area of the face box in pixels squared.

get_height(self: tfsdk.FaceBoxAndLandmarks) float

Get the the height of the face box in pixels.

property landmarks

The list of facial landmark points (Point) in this order: subject right eye, subject left eye, nose, subject right mouth corner, subject left mouth corner.

property score

Likelihood of this being a true positive.

to_dict(self: tfsdk.FaceBoxAndLandmarks) dict

Return a dictionary representation of the object.

property top_left

The top-left corner Point of the bounding box.

The order of the face landmarks:

_images/landmarks2.jpg
class tfsdk.HeadOrientation
property pitch

The rotation angle around the image’s transverse axis, in radians.

property roll

The rotation angle around the image’s longitudinal axis, in radians.

property rotation_vec

The rotation vector, can be passed to tfsdk.SDK.draw_head_orientation_box() method.

property translation_vec

The translation vector, can be passed to tfsdk.SDK.draw_head_orientation_box() method.

property yaw

The rotation angle around the image’s vertical axis, in radians.