1 to 1 Face Recognition¶
- SDK.get_face_feature_vector(*args, **kwargs)¶
- Overloaded function. - get_face_feature_vector(self: tfsdk.SDK, aligned_face_image: tfsdk.TFFacechip) -> Tuple[tfsdk.ERRORCODE, tfsdk.Faceprint] - Extract the feature vector (Faceprint) for the given aligned face image. - Parameters
- tf_facechip - the - tfsdk.TFFacechiprepresenting the aligned face chip. Face chip must have size of 112x112 pixels, therefore use the default margin and scale parameters when calling- tfsdk.SDK.extract_aligned_face().
- Returns
- The - ERRORCODEand- tfsdk.Faceprint, in that order.
 
- get_face_feature_vector(self: tfsdk.SDK, face_box_and_landmarks: tfsdk.TFImage, tf_image: tfsdk.FaceBoxAndLandmarks) -> Tuple[tfsdk.ERRORCODE, tfsdk.Faceprint] - Extract the face feature vector (Faceprint) from the face box. - Parameters
- tf_image - the input - tfsdk.TFImage, returned by- tfsdk.SDK.preprocess_image().
- face_box_and_landmarks - face box and landmarks returned by - tfsdk.SDK.detect_faces()or- tfsdk.SDK.detect_largest_face().
 
- Returns
- The - ERRORCODEand- tfsdk.Faceprint, in that order.
 
 
- SDK.get_face_feature_vectors(self: tfsdk.SDK, aligned_face_images: List[tfsdk.TFFacechip]) → Tuple[tfsdk.ERRORCODE, List[tfsdk.Faceprint]]¶
- Extract the face feature vectors (Faceprints) from the aligned face images. This batch processing method increases throughput when using GPU inference. - Parameters
- tf_facechips - a list of - tfsdk.TFFacechips.
- Returns
- The - ERRORCODEand a list of- tfsdk.Faceprint, in that order.
 
- SDK.get_largest_face_feature_vector(self: tfsdk.SDK, tf_image: tfsdk.TFImage) → Tuple[tfsdk.ERRORCODE, tfsdk.Faceprint, bool]¶
- Detect the largest face in the image by area and return the corresponding feature vector (Faceprint). - Parameters
 - tf_image - the input - tfsdk.TFImage, returned by- tfsdk.SDK.preprocess_image(). :Returns:- The - ERRORCODE,- tfsdk.Faceprint, and a bool indicating if a face was detected, in that order. If not face was detected in the image, the Faceprint will be empty.
- static SDK.faceprint_to_json(faceprint: tfsdk.Faceprint) → str¶
- Convert a - tfsdk.Faceprintinto a json string.- Parameters
- faceprint – the - tfsdk.Faceprintto convert to a string.
- Returns
- The string representation of the - tfsdk.Faceprint.
 
- static SDK.json_to_faceprint(json_string: str) → Tuple[tfsdk.ERRORCODE, tfsdk.Faceprint]¶
- Create a - tfsdk.Faceprintfrom a json string.- Parameters
- json_string – the json string representation of a - tfsdk.Faceprint, generated from the- tfsdk.SDK.json_to_faceprint()function.
- Returns
- The - tfsdk.Faceprintgenerated from the json string.
 
- SDK.get_similarity(self: tfsdk.SDK, feature_vector_1: tfsdk.Faceprint, feature_vector_2: tfsdk.Faceprint) → Tuple[tfsdk.ERRORCODE, float, float]¶
- Compute the similarity between two feature vectors, or how similar two faces are. Note, while the match probability may be more intuitive to understand, match thresholding should be performed on the similarity score. To understand the difference between these two metrics, refer to our FAQ page. Refer to the ROC curves when selecting a threshold. - Parameters
- feature_vector_1 – the first Faceprint to be compared. 
- feature_vector_2 – the second Faceprint to be compared. 
 
- Returns
- The - ERRORCODE, match probability and similarity score, in that order. The match probability is the probability that the two faces feature vectors are a match, while the similairty is the computed similairty score.
 
- class tfsdk.Faceprint¶
- compare(self: tfsdk.Faceprint, fp: tfsdk.Faceprint) → Tuple[tfsdk.ERRORCODE, float, float]¶
- Compare the similarity between two - tfsdk.Faceprint. The same as- tfsdk.SDK.get_similarity().- Parameters
- fp - the - tfsdk.Faceprintto compare against.
- Returns
- The - ERRORCODE, match probability, and similarity score, in that order.
 
 - property feature_vector¶
- Vector of floats which describe the face. 
 - get_quantized_vector(self: tfsdk.Faceprint) → numpy.ndarray[numpy.int16]¶
- Return the feature vector as a list of 16-bit integers. This is useful for when the - tfsdk.ModelOptions.fr_vector_compressionoption is enabled and you require an integer representation of the quantized feature vector.- Returns
- A 16-bit numpy array representation of the - tfsdk.Faceprint.feature_vector.
 
 - property model_name¶
- Name of model used to generate feature vector. 
 - property model_options¶
- Additional options used for generating the feature vector. 
 - property sdk_version¶
- SDK version used to generate feature vector. 
 - set_quantized_vector(self: tfsdk.Faceprint, quantized_feature_vector: numpy.ndarray[numpy.int16]) → None¶
- Populate the - tfsdk.Faceprint.feature_vector()from a quantized 16-bit numpy array generated by- tfsdk.Faceprint.get_quanitzed_vector()- Parameters
- quantized_feature_vector - the 16-bit numpy array feature vector. 
 
 
- class tfsdk.ModelOptions¶
- property fr_vector_compression¶
- Indicates if the - tfsdk.ConfigurationOptions.fr_vector_compressionoption was enabled when generating the feature vector.