Face Detection¶
- class tfsdk.TFFacechip¶
Example of a Facechip:
- TFFacechip.save_image(self: tfsdk.TFFacechip, filepath: str) → None¶
Save the face chip to disk.
- Parameters
filepath - the filepath where the face chip should be saved, including the image extension.
- TFFacechip.load_image(self: tfsdk.TFFacechip, filepath: str, gpu_memory: bool = False, gpu_index: int = 0) → tfsdk.ERRORCODE¶
Load the face chip from disk.
- Parameters
filepath - the filepath of the facechip to load.
gpu_memory - read the image into GPU memory. This should be set to true when running GPU inference.
gpu_index - the GPU index.
- TFFacechip.get_height(self: tfsdk.TFFacechip) → int¶
Get the face chip height in pixels.
- Returns
Returns the face chip height in pixels.
- TFFacechip.get_width(self: tfsdk.TFFacechip) → int¶
Get the face chip width in pixels.
- Returns
Returns the face chip width in pixels.
- TFFacechip.as_numpy_array(self: tfsdk.TFFacechip) → numpy.ndarray[numpy.uint8]¶
Get the facechip as a numpy array.
- Returns
Returns the facechip as a numpy array in BGR format.
- SDK.detect_faces(self: tfsdk.SDK, tf_image: tfsdk.TFImage) → Tuple[tfsdk.ERRORCODE, List[tfsdk.FaceBoxAndLandmarks]]¶
Detect all the faces in the image and return the bounding boxes and facial landmarks. Use the
FACEDETECTIONFILTER
configuration option to filter the detected faces. Refer to our FAQ page to understand the impact of face height on similarity score. The face detector is able to detect faces in the following dynamic height range. Smallest detectable face = ((the larger of your image dimensions) / 640 * 20) pixels. Largest detectable face = (your image height) pixels.- Parameters
tf_image – the input
tfsdk.TFImage
, returned bytfsdk.SDK.preprocess_image()
.- Returns
An :class`ERRORCODE`, a list of
FaceBoxAndLandmarks
representing each of the detected faces. If no faces are found, the list will be empty. The detected faces are sorted in order of descending face score.
- SDK.detect_largest_face(self: tfsdk.SDK, tf_image: tfsdk.TFImage) → Tuple[tfsdk.ERRORCODE, bool, tfsdk.FaceBoxAndLandmarks]¶
Detect the largest face in the image by area. Use the
FACEDETECTIONFILTER
configuration option to filter the detected faces. Refer to our FAQ page to understand the impact of face height on similarity score. The face detector is able to detect faces in the following dynamic height range. Smallest detectable face = ((the larger of your image dimensions) / 640 * 20) pixels. Largest detectable face = (your image height) pixels.- Parameters
tf_image – the input
tfsdk.TFImage
, returned bytfsdk.SDK.preprocess_image()
.- Returns
The
ERRORCODE
, a bool indicating if a face was detected and the correspondingtfsdk.FaceBoxAndLandmarks
, in that order.
- SDK.get_face_landmarks(self: tfsdk.SDK, tf_image: tfsdk.TFImage, face_box_and_landmarks: tfsdk.FaceBoxAndLandmarks) → Tuple[tfsdk.ERRORCODE, Annotated[List[tfsdk.Point], FixedSize(106)]]¶
Obtain the 106 face landmarks.
- Parameters
tf_image - the input
tfsdk.TFImage
, returned bytfsdk.SDK.preprocess_image()
.face_box_and_landmarks -
tfsdk.FaceBoxAndLandmarks
returned bytfsdk.SDK.detect_faces()
ortfsdk.SDK.detect_largest_face()
.
- Returns
The
tfsdk.ERRORCODE
and list of the 106 face landmark points, returned in that order.
Obtain the 106 face landmarks.
The order of the face landmarks:
- SDK.extract_aligned_face(self: tfsdk.SDK, tf_image: tfsdk.TFImage, face_box_and_landmarks: tfsdk.FaceBoxAndLandmarks, margin_left: int = 0, margin_top: int = 0, margin_right: int = 0, margin_bottom: int = 0, scale: float = 1.0) → Tuple[tfsdk.ERRORCODE, tfsdk.TFFacechip]¶
Extract the aligned face chip. Changing the margins and scale will change the face chip size. If using the face chip with Trueface algorithms (ex face recognition), do not change the default margin and scale values.
- Parameters
tf_image - the input
tfsdk.TFImage
, returned bytfsdk.SDK.preprocess_image()
.face_box_and_landmarks - the
tfsdk.FaceBoxAndLandmarks
returned bytfsdk.SDK.detect_largest_face()
ortfsdk.SDK.detect_faces()
.margin_left - adds a margin to the left side of the face chip (default = 0).
margin_top - adds a margin to the top side of the face chip (default = 0).
margin_right - adds a margin to the right side of the face chip (default = 0).
margin_bottom - adds a margin to the bottom side of the face chip (default = 0).
scale - changes the scale of the face chip (default = 1).
- Returns
Returns
tfsdk.ERRORCODE
andtfsdk.TFFacechip
.
- SDK.estimate_head_orientation(self: tfsdk.SDK, tf_image: tfsdk.TFImage, face_box_and_landmarks: tfsdk.FaceBoxAndLandmarks, landmarks: Annotated[List[tfsdk.Point], FixedSize(106)]) → Tuple[tfsdk.ERRORCODE, float, float, float, Annotated[List[float], FixedSize(3)], Annotated[List[float], FixedSize(3)]]¶
Estimate the head orientation. Refer to our FAQ page to understand the impact of head orientation on similarity score.
- Parameters
tf_image - the input
tfsdk.TFImage
, returned bytfsdk.SDK.preprocess_image()
.face_box_and_landmarks - the
tfsdk.FaceBoxAndLandmarks
.landmarks - the detailed landmarks returned by
tfsdk.SDK.get_face_landmarks()
.
- Returns
The
ERRORCODE
, yaw, pitch, roll, rotation_vector, translation_vector, in that order. Angles are in radians. The rotation and translation vectors can be passed totfsdk.SDK.draw_head_orientation_box()
method.
- class tfsdk.Point¶
- to_dict(self: tfsdk.Point) → dict¶
Return a dictionary representation of the object.
- property x¶
Coordinate along the horizontal axis, or pixel column.
- property y¶
Coordinate along the vertical axis, or pixel row.
- class tfsdk.FaceBoxAndLandmarks¶
-
- get_area(self: tfsdk.FaceBoxAndLandmarks) → float¶
Get the area of the face box in pixels squared.
- get_height(self: tfsdk.FaceBoxAndLandmarks) → float¶
Get the the height of the face box in pixels.
- property landmarks¶
The list of facial landmark points (
Point
) in this order: subject right eye, subject left eye, nose, subject right mouth corner, subject left mouth corner.
- property score¶
Likelihood of this being a true positive.
- to_dict(self: tfsdk.FaceBoxAndLandmarks) → dict¶
Return a dictionary representation of the object.
The order of the face landmarks: